2015-06-01から1ヶ月間の記事一覧
「次に、生成・消滅演算子の交換関係(2.29)式から、の交換関係を導くことができます」 (2.29) 「この関係を代入すると、の交換関係は、次のようになります」 「なお、最後の行において、(2.50)式の関係を用いました」 (2.50) 「以上から、クライン−ゴルドン…
「時間が同時()の場合は、次の(2.20)式により、交換関係がゼロになることは既に見ました」 (2.20) 「次に、任意の時刻を想定した、より一般的な計算をしてみましょう。(2.47)式から、一般的なクライン−ゴルドン場の交換関係を計算することができます」 (2.…
交換関係と不確定性との間の関係 1.交換関係がゼロでない→一方の量の測定によって、もう一方の量が不確定になる 2.交換関係がゼロ→ある測定は、他の測定に影響を与えない(不確定にならない) 「空間的な領域において場の交換関係がゼロでない場合、一方…
「ここで、測定を試みることができるもっとも簡単なものは場なので、交換関係を計算してみましょう。この交換関係がゼロになれば、ある測定は、他の測定に影響を与えることができません」 交換関係がゼロになる ↓ ある測定は、他の測定に影響を与えることが…
「時間的・空間的な伝搬粒子のクライン‐ゴルドン場の振幅が求まったので、これらの結果に基づいて、因果律について考察してみましょう」 (2.52) 「前回導いた(2.52)式から、空間的な領域、すなわち、光円錐の外側では、伝搬振幅が指数関数的に減衰しますが、…
反射的に後ろを振り向くと、俺の目と鼻の先に一人の小柄な少女が立っていた。 武者さんだった。 彼女が小脇に抱えているのがディラックの「量子力學」でなく、暗殺用の短剣なら、俺は彼女の気配に気づくこともなく死んでいただろう。 恐るべきステルス能力に…
「以上から、は、次式のようになることがわかりました」 「次に、この積分を評価してみましょう」 「ちょっと待って!」 突然、一宮が待ったをかけた。俺たちは一宮の顔を見た。 「上の積分経路って、ひょっとして虚数軸を通っているんじゃないの?」 「そう…
「次に、とおいて、積分変数をからに変換したときの、積分区間の変化を見てみましょう。の関係から積分区間の変化は次のようになります」 「ここで、は実数軸上の変数に対応し、は虚数軸上の変数に対応します。図2.3から虚数軸のからまでの間には、被積分関…
「次に、空間的なクライン‐ゴルドン場の伝搬粒子の振幅の具体的な値を計算してみましょう」 「上式の被積分関数を複素関数に拡張して考えると、図2.3に示されるように、から始まる虚軸上の分岐(ぶんき)(branch cut)を有します」 図2.3 空間的距離上の伝…
「次に、において、と変数変換すると、の関係が成り立ち、また、Einsteinの関係式からとなるため、次のように変形することができます」 「ここで、右辺の式において、と置き換えても一般性は失われないので、結局は、と置き換えることができます」 「この関…
「次に、体積積分を計算するために、直交座標系から極座標系への積分変換を行います」 直交座標系から極座標系への積分変換 「この積分変換により、は次のようになります」 「ここで、とおくと、から、次のようになります」
「次に、x-yが純粋に空間的な場合、すなわち、の場合を考えてみます。このとき、(2.50)式より振幅は次のようになります」 (2.50) 「ちょっと待ってよ! どうして指数関数の肩の符号がマイナスじゃなくて、プラスになってるのよ!」 一宮が、もの問いたげな目…
「ここで、時間的な伝搬粒子のクライン‐ゴルドン場の振幅の大きさを実際に評価してみましょう」 「について、の極限において、指数関数からの寄与は指数関数的に増大するため、からの寄与に比べてからの寄与は無視できます。それゆえ、と書くことができます…
「次に、上の積分を計算するため、積分変数をからに変換します。ここで、をで微分すると次のようになります」 「この関係を代入すると、は、次のように簡単な式になります」 「次に、から、となるため、この式を上の式に代入すると、エネルギーEについてのの…
「前回の計算により、時空間のクライン‐ゴルドン場の伝搬粒子の振幅は、次のようになることが分かりました」 (2.50) 「この形の積分は、(2.40)からローレンツ不変になることをすでに説明しました」 (2.40) 「次に、のいくつか特定の値について、実際にこの積…
↓ 、、、 「前回の考察から、上の4つの項のうち、唯一ゼロにならない項は、となります。この結果を踏まえて、実際にを計算してみましょう」 時空間のクライン−ゴルドン場 (2.47) 「計算には、上の(2.47)式を代入します」 「ここで、次の(2.29)式を用いてを…
因果律「それでは、次に、因果律の問題について考えてみたいと思います。Heisenberg描像において、yからxに伝搬する1粒子の振幅は、と書くことができます。ブラケットを右から左に読む、という規則に従えば、は、yに1粒子が存在する状態からxに1粒子が存…
時空間のクライン−ゴルドン場 (2.47) 「時空間のクライン‐ゴルドン場の指数関数内の時間依存性には、プラスとマイナスの両方の符号が現れます。すなわち、が常に正であるとしたとき、およびの両方を見いだすことができます。仮に、これらが単一粒子の波動関…
「ここで、(2.47)式の物理的な意味について考えてみましょう」 (2.47) 「(2.47)式は、量子場の粒子と波の二重性の解釈を明確にします。すなわち、は、励起された場の量子である粒子を生成・消滅させるヒルベルト空間演算子として記載される一方で、は、クラ…
(2.48) 「上の(2.48)式の左右からそれぞれおよびをかけて、時間に依存した式に書き換えることによって、次の(2.49)式が成り立つことがわかります」 (2.49) 「なお、、としました。上の式の右辺は、のみが含まれ、時間に依存していないように見えますが、実際…
「下の運動量演算子と生成・消滅演算子との交換関係から、ととの間の関係式を求めてみましょう」 「上の式から、次の式が導かれます」 「ここで、上の消滅演算子の関係式からを計算してみます」 「また、についても同様に計算することができます」 「この関…
「次に、Hの代わりにPについて同様の操作を実行して、ととを関連付けることを考えてみます。(2.46)式と同様に、次の(2.48)式を示すことができます」 (2.48) 「ここで、であり、小文字のpと異なります」 「同じ文字なのに、小文字と大文字とで異なるなんて、…